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ON SOME PROBLEMS CONCERNING THE NONLINEAR INFILTRATION
IN UNSATURATED MEDIA

The paper deals with the mathematical treatment of two specific models related to water infiltration in soils.
The mathematical models consist of Richard’s equation with appropriate boundary and initial conditions.
The hydraulic parameters (diffusivity, hydraulic conductivity, water capacity) that represent the coefficients
of this equation are nonlinear functions. Depending on the situation studied, particularities that may arise
are represented by the fact that the water capacity vanishes at the saturation value, implying that the
equation degenerates at the interface between unsaturated-saturated flow and diffusivity blows up at the
moisture saturation value in the unsaturated model. The paper develops a theory concerning the existence
of the solution of each model apart.

1. Statement of the problem.

Let Q be an open bounded subset of R¥ (N = 1,2,3) with the boundary 99 ""&"
' sufficiently smooth and (0,7) is a finite time interval. Let & € Q represent the vector
x = (x1,%2,23). Consider the mathematical model describing the water infiltration into an
unsaturated soil

C(h)g—‘;‘ ~ V- (K((h)Vh) + BI‘E) =f, (#,) €Q=0x(0,T) (1)
h(z,0) = ho(), = € Q 2)
h(z,t) = g(z,t), (z,t) €S =T x (0, 7). (3)

Equation (1) is in fact Richards’ equation written for the pressure head, h(z,t), where
C(h) is the water capacity and K is the hydraulic conductivity, both depending nonlinearly
on h. Given the constitutive relationship linking the volumetric water content (or moisture)
0 with the pressure head, # = #(h), the water capacity is derived from C(h) = df/dh. In this
study we assume that i — #(h) is a nonhysteretic function, continuous and monotonically
increasing. The distribution of the pressures is known in Q at the initial time, ¢ is known
and continuous on I' x [0,7] and the function f stands for some source in the domain. In
the unsaturated soil, characterized by h < 0, the functions C and K are defined as follows:
C:lh,0) = (0,Cy], K : [h,0) = [K,, K,) and they are continuous with respect to h. Here
h is a negative number, C,, K, and K, are positive numbers, all known. Moreover, C is
monotonically decreasing and K is monotonically increasing on [h,,0). In a saturated soil
in which & > 0 the functions take constant values, namely, C'(h) = 0 and K(h) = K,. We
assume still that

(i) there exists M > 0 such that K'(h) < MC(h).

We extend the functions by continuity to the left of h,, such that 0 < C(h) < C,

and 0 < K(h) < K, , for h < h,, such that ffoo K(¢)d¢ = +oc. Further we introduce the
functions

s | o e GO BED  ssaps. { it K(C)d¢, h <0 f
C(h)‘{es,hio KR =\ K Kb B> 0 @
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with K = K*(0), 6, = C*(0) and notice that C*(h) = 6. It is convenient to work in variable
6, so we introduce the inverse of C* and define

s (C*)_l(ﬂ)a 6 < 05 * 20, I{*((C*)_l(g)), 0 < 95 -
h= { 0, +0c), =0, * P O)= { [K*, +00), 8 = 6, (5)

and x(6) = K((C*)~1(h)). We still denote
8(0) = K((C*)71(6))/C((C*)7H(0) = p (6)
and we have 3(0) > p= K,/C,, 6 < 0,. Also 3* satisfies
(i) (8(0) — B8(8))(6 - 0) > p(6 — )%, V0,0 € (—o0, 6]
(i) lim B*(f) = —cc.

——oc
Due to (ig) it follows that § — (@) is Lipschitz, i.e.,
(iig) |k(0) — x(8)| < M |0 —6], V6,0 <8,.

Correspondingly to these definitions the mathematical model to be studied reduces to the
nonlinear diffusion equation

oL " ok(8) .. ”
gt__A'B (6) + D, =finQ (7)

0(x,0) = p(x) in Q, Oz, t) = 04(x,t) = C*(g(,?)) on X.

We can consider now two approaches. If we would like to catch the occurrence and
development of saturation (h > 0 or # = 6,) we take into account model (7) with 5*(6) the
multivalued operator given by (5) with the conditions (i) — (¢4), (iig).

If the interest is in the evolution in the unsaturated situation only (h < 0, 8 < ;) we
shall study the model (7) in the domain 6 < 6, where §* satisfies (i), (i7) but blows up at
0 =0,, ie.,

(iii) Jim 3°(6) = oc.

2. Unsaturated model (0 < 6;).

Consider again model (7) with conditions (7) — (i), (4ix ). Moreover we assume that
O,(x,t) < 05, V(z,t) € T x [0,T], expressing the fact that we admit that the saturation does
not reach the boundary. Previous results on this problem (for the case () < oo) have been
given in [7], [1], [4], [8], [9]-

Functional framework. For convenience we shall denote by (, ) and ||.|| the scalar product
and respectively the norm in L?(2). Also, if any confusion is avoided we shall no longer
indicate in the integrands those function arguments that represent the integration variables.

Let us consider the spaces V' = Hg(fQ), with the usual scalar product and its dual
V' = H (). On V' we define the scalar product by < u, 7 >y= (u,v), with ¥» € V' the
solution of the problem —Ay =%, ¢ =0o0n .

Suppose that there exists a function w with the properties:
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(Hg) w € L*(0, T; HY(Q)) N L®(Q), wy € LA x (0,T)), |[wll () < b5, and w = 6, on
o0, 00

Now, by replacing 6 by ¢ = f—w, we shall reduce (7) to the problem with a homogeneous
boundary condition

_(?9_ * p— 8}{((5-’-%) _?E
é(x,0) = by(z) — w(z,0) ""E" ¢, () iInf); olz.t)=0onE.

We define the operator A(t) : vV — 1”7 by

(A(t)o,v) = f VE* (¢ +w) - Vipdx — M’{i’d&} VeV
0 Q Oz
and so we are led to the Cauchy problem
d
d—f+4()¢> f————aete(O,T), (9)
#(0) = ¢g(z) in Q. (10)

Easily one can show that if ¢ is a strong solution to the Cauchy problem (9)-(10) then
it satisfies (8) in the sense of distributions. It is convenient to rewrite (9) in the following
form

do p_ dw
o + B(t)p = f° — i te (0,7) (11)
where the time dependent operator B(t) : VV — V" is defined by
(B(t)d,v) = f VFY(¢+ w) Vipdr — / k(¢ + w)gidx, Yy eV, (12)
Q Q Z3
F*(¢) = B*(¢ +w) — , Vo €V, fB=f+AB (w) (13)

2.1. The approximating problem. We have to face with the fact that the function 3*
blows up at the saturation value 6, reason for which we first shall consider an approximating
problem. We take ¢ > 0 and we approximate the function 3*(f) in the following way

B*0)if0 <0, —¢ )
B S { 5 (0, ~ &) (0 =0, +)B(0, — &) 69 9= (14
We remind that for # < 6, the function § is monotonically increasing and for each ¢ > 0 we
have p < 3.(0) < K, = K,/C((C*)"*(65 — €)). So we write the approximating problem in
the form

dg. duw
o T B¢ = fB—Eae t€(0,T) (15)
¢:(0) = ¢o (16)
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where ¢, = 0. — w, F.(¢) = 8(¢ +w) — 32 (w) € H}(Q),V¢p € V and the operator B.(t) :
V" — V" is defined by

n
(B:(t)¢,v) = ] VF. () - Vidx — / k(@ + w)—‘—aj«ida:, Vi € V.
Q Q O3

Properties of the operator B.(t). For each £ > 0, The operator B.(t) is continuous from V'
to V' and satisfies

||Bs(t)¢”1,-" < ke ||(3>||1 + CI;, Vo eV,
(B:()9,9) 2 £ 11911} = %o ll6l* = 7,

where a. = 0. + Mcq, al = ol + M||w|| + ear, 0. = coKe, 0! = (K. + K,) |||, eum
follows from (i) and cq is the constant occurring in Friedrich’s inequality. Also vy = M?/p,
’}fs = (QE i ]u‘?)/p ||w||H1(Q) = cif/:o} q: = I{e = I{wa R‘w = I\’((C*)_l(w))'

Let j : R — (—o0,00] by defined by
j(r) = { R e (17)

i
+oo, r > ;.

Then, (see|6]), j is a proper, convex and lower-semicontinuous (l.s.c.) function on R and
adil(r) = g*(r)
PROPOSITION 1. Assume hypothesis (Hg), let f € L*(0,T; H~'(Q)) and 6y € L*(2). Then

the approzimating problem (15)-(16) has, for each € > 0, a unique solution ¢. absolutely
continuous on [0, T), that satisfies

¢ € L*(0,T; Hy(Q?)), d¢/dt € L*(0,T; H™'(Q)), (18)
implying that
9. € L%(0,T; H\(Y)), df./dt € L%(0,T; H™1(Q)). (19)

Moreover, ¢. satisfies the estimate

d(¢e +w)(7)

2
e dr+ (20)

‘_:f

p : !
21001 < [ ifot)da+ [

+ [ IR dr < oo [ dto)dz+ [ 11723 dr +1), vee ©.7).

Here cq is a constant independent on ¢ and j.(r) = [| B2 (£)dE.
THEOREM 1. Let us assume hypothesis (Hg) and

f€L*0,T; H (), 8o € L*(Q), j(6o) € L'(2). (21)
Then there exists a unique strong solution ¢ to (9)-(10) that satisfies

¢ € L*(0,T; Hy (), do/dt € L*(0,T; H'(9)), (22)

6 € L*(0,T; H'(Q)), d/dt € L*(0,T; H*(R)). (23)
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Moreover, it follows that

B*(9) € L*(0,T; H'(Q)), j(0) € L*(0,T; L}(Q)). (24)

If the initial solution is less regular, i.e. 6y € My, = {6 € L?(Q2); 6 < 6,}, which represents
the closure in V' of the set M; = {6 € L*(Q); j(6) € L'(2)} we can enounce the next result

THEOREM 2. Let f € L*(0,T; H X)), 8 € My, and assume (Hg). Then the Cauchy
problem (9)-(10) has a unique solution 8 € C([0,T], H Y(Q)) such that

6 € Wh2(5,T; H1(Q)) for every 0 < 6 < T, (25)
3(0) € LY(Q), (26)
Vtdé/dt € L*(0,T; H'(Q)), ViD*(0) € L*(0,T; H'(Q)). (27)

2.2. Proof of the results. Since B.(t) satisfies the properties indicated before and f? €
L*(0,T;V"), (18)-(19) follow from a well known theorem of Lions, [5]. To obtain estimate
(20) we multiply equation (15) by F.(¢.) € H}(f2) and integrate over Q x (0,t) for t € (0,T)

AthFE(¢s)dxdT+/{f IVF.(¢.)| dadr =
/ffBF O drdr+/f k(oo + aF(és Gl

We take into account the relationships

ngfe) 8 (4, 3¢e : / / Bu(o dord§>

Je(bo) = 0 3'(£)d€ < j(6h).

After some calculations we find that

L. < [ qcooyds+ 5 [ IR ar <

< cs+ (M2 + / 6. dr + £ 6. (0) 17,

where
2

dr+

B.(w(r) 22

_ Lo 1, L[
s = [ a6z -+ 3 80l + 5 13 w0 + 5
o 2 0
1
G+ 182 (w(@®))|I* < oo.

+ 1ol

Using Gronwall’s lemma we obtain that

) 1 4 5 ' t
ﬁje(ag(t))dﬁifo ||F€(¢£(T))|[1,-d‘r§cl(/s;j(ﬁg)d:c+/[; HfB(T)”f,, dr +1).
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Then we multiply (15) scalarwise in V' by d(¢e + w)/dt and by similar calculations we get

that
1 i
f_}f(fr';(t))d:f’-F _f
0 4 0

By adding these last results we obtain (20) as claimed. The constants ¢; and ¢, are independent
on €. The requirement that 0,(z,t) < 0,, V(2,t) € I x [0, T] ensures that §.(w) = (w) < 00
as necessary in this proof.[J

Proof of Theorem 1. We let ¢ to tend to 0. If j(6y) € L'(Q), we derive from (20)
that {#.} lies in a bounded subset of L>(0,T; L?(f2)), {d¢./dt} lies in a bounded subset of
L*(0,T; H1(Q)) and {F.(#.)} is in a bounded subset of L2(0,T; H}(Q)). Using (i) we get
that (F.)~!is Lipschitz and hence (¢, ) is in a bounded subset of L?(0,T; H}(f2)), too. Since
V' = Hg(Q) is compactly embedded in H = L*(Q2) we conclude, according to Lions-Aubin
theorem, [5] that {¢.} is compact in L?(0,T; L%(2)), i.e., on a subsequence

do.(7)

2 ¢
dr < 02(/ j(6o)dx + / HfB(T)“?,; dr +1).
dr Q 0

v

¢. — ¢ in L*(0,T; L*(Y)) as e — 0 .
So, we conclude that there exists a subsequence (that will be denoted ¢. too) such that
é. — ¢ weakly in L*(0,T; Hy(Q)),

do. /dt — dé/dt weakly in L?(0,T; H 1(Q)),
F.(¢.) — x weakly in L%(0,T; Hy(2)),

implying that
B2 (¢, +w) — n weakly in L*(0,T; H'()).

Then it also follows that ¢.(z,t) — ¢(z,t) a.e. on  x (0,T). We shall prove that n =
B*(¢ + w). If ¢.(x,t) converges a.e. to ¢(z,t), we have, using Egorov’s theorem that for
each 6 > 0, there exists a measurable subset )5 C @, with meas(Q\Qs) < ¢ and ¢. = ¢
uniformly on @;. Since 87 is continuous and S (r) — 5*(r), as ¢ — 0 on {r;r < 6,}, we
have that 5((¢. + w)(z,t)) = B8*((¢ + w)(z,t)) on Qs and hence 5 (¢p. + w) — 5*(¢ + w)
weakly in L?*(Q;). Then we get that n = 8*(¢ + w) a.e. on Q. Therefore

x = (2 (6 +w) — B (w) = (6 +w) — §(w) = F*(9)

weakly in L?(0,7; H}(2)). Now due to the continuity of the operators 8/dx3 and —A we
have that B.(t)¢. — B(t)¢ weakly in L*(0,T; H~'(2)). Now we can pass to limit as ¢ — 0
in equations {15)-(16) and obtain that
do _,p 4w B

Moreover from (20) it follows that j.(6.) — j(#) weak star in L>(0,T’; L'(2)) completing so
the proof of the Theorem 1.0J

Proof of Theorem 2. Consider first f € L*(0,T; H~'(2)) and 6, € M;. So we can
apply Theorem 1 to find that the Cauchy problem (9)-(10) has a unique solution ¢ €
C([0,T], H () that satisfies (21)-(23). Next the idea is to multiply scalarwise in V"
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equation (9) directly by tdf/dt and integrate over (0,7). Some calculations, using the
appropriate techniques from [2] and [3], lead to the estimate

T
[
0

Similarly, multiplying scalarly in V" equation (9) by # and integrate over (0,7") we get

2

do

a(t)

T
dt < 1([16oll%- + f HIF I de + 1), (28)
0

1.’!

6] +f0'||9(’r)||2df < ao 6oll;- +0'1f0 17 ()5 dr. (29)

Also, like in Theorem 1 we still obtain foTtHF‘”(gb(t))va < constant. Detailed calculations
can be found in [6].

Further we take 6y € My, and f € L*(0,T;V"). Then there exists {69} C M, such that
#2 — 6 in V. Hence problem (15)-(16) with the initial condition 6° has, by Theorem 1, a
solution #, satisfying (21)-(23), (28)-(29) and its limit for n — oo satisfies (9)-(10).
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